Part Number Hot Search : 
KA5M0280 2SK29 860BIV96 MUR1660 L6402 74ACT MPC8241 NJU6673
Product Description
Full Text Search
 

To Download MAX2042ETP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  _______________________________________________________________ maxim integrated products 1 for pricing, delivery, and ordering information, please contact maxim direct at 1-888-629-4642, or visit maxims website at www.maxim-ic.com. sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 general description the max2042 single, high-linearity upconversion/down - conversion mixer provides +36dbm iip3, 7.3db noise fig - ure , and 7.2db conversion loss for 2000mhz to 3000mhz wcs, lte, wimax k , and mmds wireless infrastructure applications. with a wide lo frequency range of 1800mhz to 2800mhz, this particular mixer is ideal for low-side lo injection receiver and transmitter architectures. high-side lo injection is supported by the max2042a, which is pin- pin and functionally compatible with the max2042. in addition to offering excellent linearity and noise performance, the max2042 also yields a high level of component integration. this device includes a double- balanced passive mixer core, an lo buffer, and on-chip baluns that allow for single-ended rf and lo inputs. the max2042 requires a nominal lo drive of 0dbm, and supply current is typically 138ma at v cc = +5.0v or 120ma at v cc = +3.3v. the max2042 is pin compatible with the max2042a 2000mhz to 3900mhz mixer. the device is also pin simi - lar with the max2029/max2031 650mhz to 1000mhz mixers, the max2039/max2041 1700mhz to 3000mhz mixers, and the max2044/max2044a 3000mhz to 4000mhz mixers, making this entire family of up/down - converters ideal for applications where a common pcb layout is used for multiple frequency bands. the max2042 is available in a compact 20-pin thin qfn (5mm x 5mm) package with an exposed pad. electrical performance is guaranteed over the extended -40 n c to +85 n c temperature range. applications 2.3ghz wcs base stations 2.5ghz wimax and lte base stations 2.7ghz mmds base stations fixed broadband wireless access wireless local loop private mobile radios military systems features s 2000mhz to 3000mhz rf frequency range s 1800mhz to 2800mhz lo frequency range s 50mhz to 500mhz if frequency range s 7.2db conversion loss s 7.3db noise figure s +36dbm typical iip3 s +23.4dbm typical input 1db compression point s 70dbc typical 2rf-2lo spurious rejection at p rf = -10dbm s integrated lo buffer s integrated rf and lo baluns for single-ended inputs s low -3dbm to +3dbm lo drive s pin compatible with the max2042a 2000mhz to 3900mhz high-side lo injection mixer s pin similar with the max2029/max2031 650mhz to 1000mhz mixers, max2039/max2041 1700mhz to 3000mhz mixers, and max2044/max2044a 3000mhz to 4000mhz mixers s single +5.0v or +3.3v supply s external current-setting resistor provides option for operating device in reduced-power/reduced- performance mode 19-4679; rev 0; 8/09 pin configuration/ functional diagram wimax is a trademark of wimax forum. ordering information + denotes a lead(pb)-free /rohs-compliant package. * ep = exposed pad. t = tape and reel. max2042 top view 19 20 + 18 17 7 6 *exposed pad 8 rf gnd gnd 9 v cc 1 2 4 5 15 14 12 11 lobias v cc gnd gnd gnd 3 13 16 10 v cc v cc gnd gnd lo gnd if+ if- gnd gnd gnd ep* part temp range pin-package MAX2042ETP+ -40 n c to +85 n c 20 thin qfn-ep* MAX2042ETP+t -40 n c to +85 n c 20 thin qfn-ep*
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 2 ______________________________________________________________________________________ stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. these are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. v cc to gnd .......................................................... -0.3v to +5.5v if+, if-, lobias to gnd .......................... -0.3v to (v cc + 0.3v) rf, lo input power ....................................................... +20dbm rf, lo current (rf and lo are dc shorted to gnd through a balun)................................... ............. 50ma continuous power dissipation (note 1) ............................. 5.0w b ja (notes 2, 3) ............................................................ +38 n c/w b jc (notes 1, 3) ............................................................ +13 n c/w operating case temperature range (note 4) ........................................................... -40 n c to +85 n c junction temperature ..................................................... +150 n c storage temperature range ............................ -65 n c to +150 n c lead temperature (soldering, 10s) ................................ +300 n c +5.0v supply dc electrical characteristics (typical application circuit , v cc = +4.75v to +5.25v, no input ac signals. t c = -40 n c to +85 n c, unless otherwise noted. typical values are at v cc = +5.0v, t c = +25 n c, all parameters are production tested.) +3.3v supply dc electrical characteristics (typical application circuit , v cc = +3.0v to +3.6v, no input ac signals. t c = -40 n c to +85 n c, unless otherwise noted. typical values are at v cc = +3.3v, t c = +25 n c, all parameters are production tested.) recommended ac operating conditions absolute maximum ratings note 1: based on junction temperature t j = t c + ( b jc x v cc x i cc ). this formula can be used when the temperature of the exposed pad is known while the device is soldered down to a pcb. see the applications information section for details. the junction temperature must not exceed +150 n c. note 2: junction temperature t j = t a + ( b ja x v cc x i cc ). this formula can be used when the ambient temperature of the pcb is known. the junction temperature must not exceed +150 n c. note 3: package thermal resistances were obtained using the method described in jedec specification jesd51-7, using a four- layer board. for detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial . note 4: t c is the temperature on the exposed pad of the package. t a is the ambient temperature of the device and pcb. parameter symbol conditions min typ max units supply voltage v cc 4.75 5.0 5.25 v supply current i cc 138 150 ma parameter symbol conditions min typ max units supply voltage v cc 3.0 3.3 3.6 v supply current i cc 120 135 ma parameter symbol conditions min typ max units rf frequency range typical application circuit with c1 = 8.2pf, see table 1 for details (notes 5, 6) 2000 3000 mhz lo frequency f lo (notes 5, 6) 1800 2800 mhz if frequency f if using m/a-com mabaes0029 1:1 transformer as defined in the typical application circuit , if matching components affect the if frequency range (notes 5, 6) 50 500 mhz lo drive p lo (notes 5, 6) -3 0 +3 dbm
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 _______________________________________________________________________________________ 3 +5.0v supply ac electrical characteristics (downconverter operation) ( typical application circuit with tuning elements outlined in table 1 , v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 i sources, p lo = -3dbm to +3dbm, p rf = 0dbm, f rf = 2300mhz to 2900mhz, f if = 300mhz, f lo = 2000mhz to 2600mhz, f rf > f lo , t c = -40 n c to +85 n c. typical values are for t c = +25 n c, v cc = +5.0v, p rf = 0dbm, p lo = 0dbm, f rf = 2300mhz, f lo = 2300mhz, f if = 300mhz. all parameters are guaranteed by design and characterization, unless otherwise noted.) (note 7) parameter symbol conditions min typ max units small-signal conversion loss l c f rf = 2300mhz to 2900mhz, t c = +25 n c (note 8) 6.7 7.2 8.1 db loss variation vs. frequency d l c f rf = 2305mhz to 2360mhz 0.15 db f rf = 2500mhz to 2570mhz 0.15 f rf = 2570mhz to 2620mhz 0.15 f rf = 2500mhz to 2690mhz 0.15 f rf = 2700mhz to 2900mhz 0.20 conversion loss temperature coefficient tc cl t c = -40 n c to +85 n c 0.0071 db/ n c single sideband noise figure nf ssb no blockers present 7.3 db noise figure temperature coefficient tc nf f rf = 2300mhz to 2900mhz, single side - band, no blockers present, t c = -40 n c to +85 n c 0.019 db/ n c noise figure under blocking nf b +8dbm blocker tone applied to rf port, f rf = 2600mhz, f lo = 2300mhz, f blocker = 2795mhz, p lo = 0dbm, v cc = 5.0v, t c = +25 n c (notes 5, 9) 20.8 25 db input 1db compression point ip 1db t c = +25 n c (notes 5, 10) f rf = 2300mhz 22.5 23.4 dbm f rf = 2600mhz 20.6 22.1 f rf = 2900mhz 17.6 20.7 third-order input intercept point iip3 p rf1 = p rf2 = 0dbm/tone, p lo = 0dbm, t c = +25 n c f rf1 = 2300mhz, f rf2 = 2301mhz, f lo = 2000mhz (note 5) 34 36 dbm f rf1 = 2600mhz, f rf2 = 2601mhz, f lo = 2300mhz (note 8) 31 34 f rf1 = 2900mhz, f rf2 = 2901mhz, f lo = 2600mhz (note 5) 28 30 iip3 variation with t c f rf = 2300mhz to 2900mhz, f rf1 - f rf2 = 1mhz, p rf1 = p rf2 = 0dbm/ tone, t c = -40 n c to +85 n c q 0.5 db 2rf - 2lo spur rejection 2 x 2 f spur = f lo + 150mhz (note 5) p rf = -10dbm 64 70 dbc p rf = 0dbm 54 60 3rf - 3lo spur rejection 3 x 3 f spur = f lo + 100mhz (note 5) p rf = -10dbm 80 92 dbc p rf = 0dbm 60 72 rf input return loss rl rf lo on and if terminated into a matched impedance 17 db lo input return loss rl lo rf and if terminated into a matched impedance 15 db
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 4 ______________________________________________________________________________________ +5.0v supply ac electrical characteristics (downconverter operation) (continued) ( typical application circuit with tuning elements outlined in table 1 , v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 i sources, p lo = -3dbm to +3dbm, p rf = 0dbm, f rf = 2300mhz to 2900mhz, f if = 300mhz, f lo = 2000mhz to 2600mhz, f rf > f lo , t c = -40 n c to +85 n c. typical values are for t c = +25 n c, v cc = +5.0v, p rf = 0dbm, p lo = 0dbm, f rf = 2300mhz, f lo = 2300mhz, f if = 300mhz. all parameters are guaranteed by design and characterization, unless otherwise noted.) (note 7) +3.3v supply ac electrical characteristics (downconverter operation) ( typical application circuit with tuning elements outlined in table 1 , rf and lo ports are driven from 50 i sources. typical values are for t c = +25 n c, v cc = +3.3v, p rf = 0dbm, p lo = 0dbm, f rf = 2600mhz, f lo = 2300mhz, f if = 300mhz, unless otherwise noted.) (note 7) parameter symbol conditions min typ max units if output impedance z if nominal differential impedance at the ics if outputs 50 i if output return loss rl if rf terminated into 50 i , lo driven by 50 i source, if transformed to 50 i using external components shown in the typical application circuit 18 db rf-to-if isolation p lo = +3dbm (note 8) 30 37 db lo leakage at rf port f lo = 2000mhz to 2800mhz, p lo = +3dbm (note 8) -28 -22 dbm 2lo leakage at rf port p lo = +3dbm -36 dbm lo leakage at if port f lo = 2000mhz to 2800mhz, p lo = +3dbm (note 8) -24.2 -16 dbm parameter symbol conditions min typ max units small-signal conversion loss l c (note 8) 7.2 db loss variation vs. frequency d l c f rf = 2300mhz to 2900mhz, any 100mhz band 0.2 db conversion loss temperature coefficient tc cl t c = -40 n c to +85 n c 0.008 db/ n c single sideband noise figure nf ssb no blockers present 7.5 db noise figure temperature coefficient tc nf single sideband, no blockers present, t c = -40 n c to +85 n c 0.019 db/ n c input 1db compression point ip 1db (note 10) 20 dbm third-order input intercept point iip3 f rf1 = 2600mhz, f rf2 = 2601mhz, p rf1 = p rf2 = 0dbm/tone 31 dbm iip3 variation with t c f rf1 = 2600mhz, f rf2 = 2601mhz, p rf1 = p rf2 = 0dbm/tone, t c = -40 n c to +85 n c q 0.25 db 2rf - 2lo spur rejection 2 x 2 p rf = -10dbm, f spur = f lo + 150mhz 72 dbc p rf = 0dbm, f spur = f lo + 150mhz 62 3rf - 3lo spur rejection 3 x 3 p rf = -10dbm, f spur = f lo + 100mhz 87 dbc p rf = 0dbm, f spur = f lo + 100mhz 67
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 _______________________________________________________________________________________ 5 +3.3v supply ac electrical characteristics (downconverter operation) (continued) ( typical application circuit with tuning elements outlined in table 1 , rf and lo ports are driven from 50 i sources. typical values are for t c = +25 n c, v cc = +3.3v, p rf = 0dbm, p lo = 0dbm, f rf = 2600mhz, f lo = 2300mhz, f if = 300mhz, unless otherwise noted.) (note 7) +5.0v supply ac electrical characteristics (upconverter operation) ( typical application circuit with tuning elements outlined in table 2 , v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 i sources, p lo = -3dbm to +3dbm, p if = 0dbm, f rf = 2300mhz to 2900mhz, f if =200mhz, f lo = 2100mhz to 2700mhz, f rf > f lo , t c = -40 n c to +85 n c. typical values are for t c = +25 n c, v cc = +5.0v, p if = 0dbm, p lo = 0dbm, f rf = 2600mhz, f lo = 2400mhz, f if = 200mhz. all parameters are guaranteed by design and characterization, unless otherwise noted.) (note 7) parameter symbol conditions min typ max units rf input return loss rl rf lo on and if terminated into a matched impedance 15 db lo input return loss rl lo rf and if terminated into a matched impedance 12 db if output impedance z if nominal differential impedance at the ics if outputs 50 i if output return loss rl if rf terminated into 50 i , lo driven by 50 i source, if transformed to 50 i using external components shown in the typical application circuit 18 db minimum rf-to-if isolation f rf = 2300mhz to 2900mhz, p lo = +3dbm 36 db maximum lo leakage at rf port f lo = 1800mhz to 2800mhz, p lo = +3dbm -24.5 dbm maximum 2lo leakage at rf port f lo = 1800mhz to 2800mhz, p lo = +3dbm -24 dbm maximum lo leakage at if port f lo = 1800mhz to 2800mhz, p lo = +3dbm -20 dbm parameter symbol conditions min typ max units small-signal conversion loss l c (note 8) 6.8 db loss variation vs. frequency d l c f rf = 2300mhz to 2960mhz, any 100mhz band 0.2 db conversion loss temperature coefficient tc cl t c = -40 n c to +85 n c 0.007 db/ n c input 1db compression point ip 1db (note 10) 22.7 dbm third-order input intercept point iip3 f if1 = 200mhz, f if2 = 201mhz, p if1 = p if2 = 0dbm/tone, f lo = 2400mhz, p lo = 0dbm, t c = +25 n c (note 8) 30 32.4 dbm iip3 variation with t c f if1 = 200mhz, f if2 = 201mhz, p if1 = p if2 = 0dbm/tone, f lo = 2400mhz, p lo = 0dbm, t c = -40 n c to +85 n c q 0.5 db lo q 2if spur rejection 1 x 2 lo - 2if 70 dbc lo + 2if 67 lo q 3if spur rejection 1 x 3 lo - 3if 82 dbc lo + 3if 77 output noise floor p out = 0dbm (note 9) -163 dbm/hz
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 6 ______________________________________________________________________________________ note 5: not production tested. note 6: operation outside this range is possible, but with degraded performance of some parameters. see the typical operating characteristics . note 7: all limits reflect losses of external components, including a 0.5db loss at f if = 300mhz due to the 1:1 impedance trans - former. output measurements were taken at if outputs of the typical application circuit . note 8: 100% production tested for functional performance. note 9: measured with external lo source noise filtered so that the noise floor is -174dbm/hz. this specification reflects the effects of all snr degradations in the mixer including the lo noise, as defined in application note 2021: specifications and measurement of local oscillator noise in integrated circuit base station mixers . note 10: maximum reliable continuous input power applied to the rf port of this device is +20dbm from a 50 i source. +3.3v supply ac electrical characteristics (upconverter operation) ( typical application circuit with tuning elements outlin ed in table 2 , rf and lo ports are driven from 50 i sources. typical values are for t c = +25 n c, v cc = +3.3v, p if = 0dbm, p lo = 0dbm, f rf = 2600mhz, f lo = 2400mhz, f if = 200mhz, unless otherwise noted.) (note 7) parameter symbol conditions min typ max units small-signal conversion loss l c 6.8 db loss variation vs. frequency d l c f rf = 2300mhz to 2900mhz, any 100mhz band 0.15 db conversion loss temperature coefficient tc cl t c = -40 n c to +85 n c 0.008 db/ n c input 1db compression point ip 1db (note 10) 19 dbm third-order input intercept point iip3 f if1 = 200mhz, f if2 = 201mhz, p if1 = p if2 = 0dbm/tone 29.5 dbm iip3 variation with t c f if1 = 200mhz, f if2 = 201mhz, p if1 = p if2 = 0dbm/tone, f lo = 2400mhz, p lo = 0dbm, t c = -40 n c to +85 n c q 0.75 db lo q 2if spur rejection 1 x 2 lo - 2if 72 dbc lo + 2if 70 lo q 3if spur rejection 1 x 3 lo - 3if 73 dbc lo + 3if 70 output noise floor p out = 0dbm (note 9) -160 dbm/hz
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 _______________________________________________________________________________________ 7 typical operating characteristics ( typical application circuit with tuning elements outlined in table 1, v cc = +5.0v , f rf > f lo , f if = 300mhz, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) +5.0v downconverter curves conversion loss vs. rf frequency max2042 toc01 rf frequency (mhz) conversion loss (db) 2800 2600 2400 2200 6 7 8 9 5 2000 3000 t c = +85 n c t c = +25 n c t c = -40 n c conversion loss vs. rf frequency max2042 toc02 rf frequency (mhz) conversion loss (db) 2800 2600 2400 2200 6 7 8 9 5 2000 3000 p lo = -3dbm, 0dbm, +3dbm conversion loss vs. rf frequency max2042 toc03 rf frequency (mhz) conversion loss (db) 2800 2600 2400 2200 6 7 8 9 5 2000 3000 v cc = 4.75v, 5.0v, 5.25v input ip3 vs. rf frequency max2042 toc04 rf frequency (mhz) input ip3 (dbm) 2800 2600 2400 2200 30 35 40 25 2000 3000 t c = -40 n c p rf = 0dbm/tone t c = +85 n c t c = +25 n c input ip3 vs. rf frequency max2042 toc05 rf frequency (mhz) input ip3 (dbm) 2800 2600 2400 2200 30 35 40 25 2000 3000 p lo = -3dbm, 0dbm, +3dbm p rf = 0dbm/tone input ip3 vs. rf frequency max2042 toc06 rf frequency (mhz) input ip3 (dbm) 2800 2600 2400 2200 30 35 40 25 2000 3000 v cc = 5.25v v cc = 4.75v v cc = 5.0v p rf = 0dbm/tone 2rf-2lo response vs. rf frequency max2042 toc07 rf frequency (mhz) 2rf-2lo response (dbc) 55 60 65 70 75 50 2000 2800 2600 2400 2200 3000 t c = -40 n c t c = +25 n c t c = +85 n c p rf = 0dbm 2rf-2lo response vs. rf frequency max2042 toc08 rf frequency (mhz) 2rf-2lo response (dbc) 55 60 65 70 75 50 2000 2800 2600 2400 2200 3000 p lo = +3dbm p lo = 0dbm p lo = -3dbm p rf = 0dbm 2rf-2lo response vs. rf frequency max2042 toc09 rf frequency (mhz) 2rf-2lo response (dbc) 55 60 65 70 75 50 2000 2800 2600 2400 2200 3000 v cc = 4.75v, 5.0v, 5.25v p rf = 0dbm
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 8 ______________________________________________________________________________________ typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1, v cc = +5.0v , f rf > f lo , f if = 300mhz, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) +5.0v downconverter curves 3rf-3lo response vs. rf frequency max2042 toc10 3rf-3lo response (dbc) 65 75 85 55 p rf = 0dbm rf frequency (mhz) 2000 2800 2600 2400 2200 3000 t c = -40nc, +25nc, +85nc 3rf-3lo response vs. rf frequency max2042 toc11 3rf-3lo response (dbc) 65 75 85 55 p rf = 0dbm rf frequency (mhz) 2000 2800 2600 2400 2200 3000 p lo = -3dbm, 0dbm, +3dbm 3rf-3lo response vs. rf frequency max2042 toc12 3rf-3lo response (dbc) 65 75 85 55 p rf = 0dbm rf frequency (mhz) 2000 2800 2600 2400 2200 3000 v cc = 4.75v, 5.0v, 5.25v noise figure vs. rf frequency max2042 toc13 noise figure (db) 5 6 7 8 9 10 4 rf frequency (mhz) 2000 2800 3000 2600 2400 2200 t c = +85nc t c = +25nc t c = -40nc noise figure vs. rf frequency max2042 toc14 noise figure (db) 5 6 7 8 9 10 4 rf frequency (mhz) 2000 2800 3000 2600 2400 2200 p lo = -3dbm, 0dbm, +3dbm noise figure vs. rf frequency max2042 toc15 noise figure (db) 5 6 7 8 9 10 4 rf frequency (mhz) 2000 2800 3000 2600 2400 2200 v cc = 4.75v, 5.0v, 5.25v input p 1db vs. rf frequency max2042 toc16 rf frequency (mhz) input p 1db (dbm) 19 21 23 25 17 2000 2800 3000 2600 2400 2200 t c = +85 n c t c = +25 n c t c = -40 n c input p 1db vs. rf frequency max2042 toc17 rf frequency (mhz) input p 1db (dbm) 19 21 23 25 17 2000 2800 3000 2600 2400 2200 p lo = -3dbm, 0dbm, +3dbm input p 1db vs. rf frequency max2042 toc18 rf frequency (mhz) input p 1db (dbm) 19 21 23 25 17 2000 2800 3000 2600 2400 2200 v cc = 5.0v v cc = 4.75v v cc = 5.25v
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 _______________________________________________________________________________________ 9 typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1, v cc = +5.0v , f rf > f lo , f if = 300mhz, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) +5.0v downconverter curves lo leakage at if port vs. lo frequency max2042 toc19 lo frequency (mhz) lo leakage at if port (dbm) 2500 2300 2100 1900 -30 -20 -10 -40 1700 2700 t c = -40 n c t c = +85 n c t c = +25 n c lo leakage at if port vs. lo frequency max2042 toc20 lo frequency (mhz) lo leakage at if port (dbm) 2500 2300 2100 1900 -30 -20 -10 -40 1700 2700 p lo = -3dbm, 0dbm, +3dbm lo leakage at if port vs. lo frequency max2042 toc21 lo frequency (mhz) lo leakage at if port (dbm) 2500 2300 2100 1900 -30 -20 -10 -40 1700 2700 v cc = 4.75v, 5.0v, 5.25v rf-to-if isolation vs. rf frequency max2042 toc22 rf freqency (mhz) rf-to-if isolation (db) 30 40 50 60 20 2000 2800 3000 2600 2400 2200 t c = +85 n c t c = +25 n c t c = -40 n c rf-to-if isolation vs. rf frequency max2042 toc23 rf frequency (mhz) rf-to-if isolation (db) 30 40 50 60 20 2000 2800 3000 2600 2400 2200 p lo = -3dbm, 0dbm, +3dbm rf-to-if isolation vs. rf frequency max2042 toc24 rf frequency (mhz) rf-to-if isolation (db) 30 40 50 60 20 2000 2800 3000 2600 2400 2200 v cc = 4.75v, 5.0v, 5.25v lo leakage at rf port vs. lo frequency max2042 toc25 lo frequency (mhz) lo leakage at rf port (dbm) -35 -30 -25 -20 -40 1800 2600 2800 2400 2200 2000 t c = -40 n c, +25 n c, +85 n c lo leakage at rf port vs. lo frequency max2042 toc26 lo frequency (mhz) lo leakage at rf port (dbm) -35 -30 -25 -20 -40 1800 2600 2800 2400 2200 2000 p lo = -3dbm, 0dbm, +3dbm lo leakage at rf port vs. lo frequency max2042 toc27 lo frequency (mhz) lo leakage at rf port (dbm) -35 -30 -25 -20 -40 1800 2600 2800 2400 2200 2000 v cc = 4.75v, 5.0v, 5.25v
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 10 _____________________________________________________________________________________ typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1, v cc = +5.0v , f rf > f lo , f if = 300mhz, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) +5.0v downconverter curves 2lo leakage at rf port vs. lo frequency max2042 toc28 2lo leakage at rf port (dbm) -45 -40 -35 -30 -25 -20 -50 lo frequency (mhz) 1800 2600 2800 2400 2200 2000 t c = +85nc t c = +25nc t c = -40nc 2lo leakage at rf port vs. lo frequency max2042 toc29 2lo leakage at rf port (dbm) -45 -40 -35 -30 -25 -20 -50 lo frequency (mhz) 1800 2600 2800 2400 2200 2000 p lo = -3dbm, 0dbm, +3dbm 2lo leakage at rf port vs. lo frequency max2042 toc30 2lo leakage at rf port (dbm) -45 -40 -35 -30 -25 -20 -50 lo frequency (mhz) 1800 2600 2800 2400 2200 2000 v cc = 4.75v, 5.0v, 5.25v rf port return loss vs. rf frequency max2042 toc31 rf port return loss (db) 25 20 15 10 5 0 30 p lo = -3dbm, 0dbm, +3dbm f if = 300mhz rf frequency (mhz) 2800 2600 2400 2200 2000 3000 if port return loss vs. if frequency max2042 toc32 if port return loss (db) 25 20 15 10 5 0 30 f lo = 2200mhz if frequency (mhz) 410 320 230 140 50 500 v cc = 4.75v, 5.0v, 5.25v lo port return loss vs. lo frequency max2042 toc33 lo frequency (mhz) lo port return loss (db) 2500 2300 2100 1900 20 10 0 30 1700 2700 p lo = -3dbm p lo = +3dbm p lo = 0dbm supply current vs. temperature (t c ) max2042 toc34 temperature (?c) supply current (ma) 60 35 10 -15 125 130 135 140 145 150 120 -40 85 v cc = 5.0v v cc = 4.75v v cc = 5.25v
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 ______________________________________________________________________________________ 11 typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1, v cc = +3.3v , f rf > f lo , f if = 300mhz, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) +3.3v downconverter curves conversion loss vs. rf frequency max2042 toc35 rf frequency (mhz) conversion loss (db) 2800 2600 2400 2200 6 7 8 9 5 2000 3000 t c = +85 n c t c = +25 n c t c = -40 n c conversion loss vs. rf frequency max2042 toc36 rf frequency (mhz) conversion loss (db) 2800 2600 2400 2200 6 7 8 9 5 2000 3000 p lo = -3dbm, 0dbm, +3dbm conversion loss vs. rf frequency max2042 toc37 rf frequency (mhz) conversion loss (db) 2800 2600 2400 2200 6 7 8 9 5 2000 3000 v cc = 3.0v, 3.3v, 3.6v input ip3 vs. rf frequency max2042 toc38 rf frequency (mhz) input ip3 (dbm) 25 30 35 20 2800 2600 2400 2200 2000 3000 t c = +85 n c t c = +25 n c t c = -40 n c p rf = 0dbm/tone input ip3 vs. rf frequency max2042 toc39 rf frequency (mhz) input ip3 (dbm) 25 30 35 20 2800 2600 2400 2200 2000 3000 p rf = 0dbm/tone p lo = -3dbm, 0dbm, +3dbm input ip3 vs. rf frequency max2042 toc40 rf frequency (mhz) input ip3 (dbm) 25 30 35 20 2800 2600 2400 2200 2000 3000 p rf = 0dbm/tone v cc = 3.0v v cc = 3.3v, 3.6v 2rf-2lo response vs. rf frequency max2042 toc41 2rf-2lo response (dbc) 55 60 65 70 75 50 rf frequency (mhz) 2800 2600 2400 2200 2000 3000 p rf = 0dbm t c = +85nc t c = +25nc t c = -40nc 2rf-2lo response vs. rf frequency max2042 toc42 2rf-2lo response (dbc) 55 60 65 70 75 50 rf frequency (mhz) 2800 2600 2400 2200 2000 3000 p rf = 0dbm p lo = +3dbm p lo = -3dbm p lo = 0dbm 2rf-2lo response vs. rf frequency max2042 toc43 2rf-2lo response (dbc) 55 60 65 70 75 50 rf frequency (mhz) 2800 2600 2400 2200 2000 3000 p rf = 0dbm v cc = 3.3v v cc = 3.0v v cc = 3.6v
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 12 _____________________________________________________________________________________ typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1, v cc = +3.3v , f rf > f lo , f if = 300mhz, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) +3.3v downconverter curves 3rf-3lo response vs. rf frequency max2042 toc44 3rf-3lo response (dbc) 60 70 80 50 rf frequency (mhz) 2800 2600 2400 2200 2000 3000 t c = -40nc, +25nc, +85nc p rf = 0dbm 3rf-3lo response vs. rf frequency max2042 toc45 rf frequency (mhz) 3rf-3lo response (dbc) 2800 2600 2400 2200 60 70 80 50 2000 3000 p rf = 0dbm p lo = -3dbm, 0dbm, +3dbm 3rf-3lo response vs. rf frequency max2042 toc46 rf frequency (mhz) 3rf-3lo response (dbc) 2800 2600 2400 2200 60 70 80 50 2000 3000 p rf = 0dbm v cc = 3.3v v cc = 3.0v v cc = 3.6v noise figure vs. rf frequency max2042 toc47 rf frequency (mhz) noise figure (db) 2800 2600 2400 2200 5 6 7 8 9 10 4 2000 3000 t c = +85c t c = +25c t c = -40c noise figure vs. rf frequency max2042 toc48 rf frequency (mhz) noise figure (db) 2800 2600 2400 2200 5 6 7 8 9 10 4 2000 3000 p lo = -3dbm, 0dbm, +3dbm noise figure vs. rf frequency max2042 toc49 rf frequency (mhz) noise figure (db) 2800 2600 2400 2200 5 6 7 8 9 10 4 2000 3000 v cc = 3.0v v cc = 3.3v v cc = 3.6v input p 1db vs. rf frequency max2042 toc50 rf frequency (mhz) input p 1db (dbm) 2800 2600 2400 2200 18 20 22 24 16 2000 3000 t c = +25c t c = +85c t c = -40c input p 1db vs. frequency max2042 toc51 rf frequency (mhz) input p 1db (dbm) 2800 2600 2400 2200 18 20 22 24 p lo = -3dbm, 0dbm, +3dbm 16 2000 3000 input p 1db vs. frequency max2042 toc52 rf frequency (mhz) input p 1db (dbm) 2800 2600 2400 2200 18 20 22 24 v cc = 3.6v v cc = 3.3v v cc = 3.0v 16 2000 3000
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 ______________________________________________________________________________________ 13 typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1, v cc = +3.3v , f rf > f lo , f if = 300mhz, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) +3.3v downconverter curves lo leakage at if port vs. lo frequency max2042 toc53 lo frequency (mhz) lo leakage at if port (dbm) 2500 2300 2100 1900 -30 -20 -10 -40 1700 2700 t c = -40nc t c = +85nc t c = +25nc lo leakage at if port vs. lo frequency max2042 toc54 lo frequency (mhz) lo leakage at if port (dbm) 2500 2300 2100 1900 -30 -20 -10 -40 1700 2700 p lo = -3dbm, 0dbm, +3dbm lo leakage at if port vs. lo frequency max2042 toc55 lo frequency (mhz) lo leakage at if port (dbm) 2500 2300 2100 1900 -30 -20 -10 -40 1700 2700 v cc = 3.0v, 3.3v, 3.6v max2042 toc56 rf-to-if isolation vs. rf frequency rf frequency (mhz) rf-to-if isolation (db) 2800 2600 2400 2200 30 40 50 60 20 2000 3000 t c = +85nc t c = -40nc t c = +25nc rf-to-if isolation vs. rf frequency max2042 toc57 rf frequency (mhz) rf-to-if isolation (db) 2800 2600 2400 2200 30 40 50 60 p lo = -3dbm, 0dbm, +3dbm 20 2000 3000 rf-to-if isolation vs. rf frequency max2042 toc58 rf frequency (mhz) rf-to-if isolation (db) 2800 2600 2400 2200 30 40 50 60 20 2000 3000 v cc = 3.0v, 3.3v, 3.6v lo leakage at rf port vs. lo frequency max2042 toc59 lo frequency (mhz) lo leakage at rf port (dbm) 2600 2400 2200 2000 -35 -30 -25 -20 -40 1800 2800 t c = -40nc, +25nc, +85nc lo leakage at rf port vs. lo frequency max2042 toc60 lo frequency (mhz) lo leakage at rf port (dbm) 2600 2400 2200 2000 -35 -30 -25 -20 -40 1800 2800 p lo = -3dbm, 0dbm, +3dbm lo leakage at rf port vs. lo frequency max2042 toc61 lo frequency (mhz) lo leakage at rf port (dbm) 2600 2400 2200 2000 -35 -30 -25 -20 -40 1800 2800 v cc = 3.6v v cc = 3.3v v cc = 3.0v
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 14 _____________________________________________________________________________________ typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 1, v cc = +3.3v , f rf > f lo , f if = 300mhz, p rf = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) +3.3v downconverter curves max2042 toc62 lo frequency (mhz) 2lo leakage at rf port (dbm) 2lo leakage at rf port vs. frequency 2600 2400 2200 2000 -45 -40 -35 -30 -25 -20 -50 1800 2800 t c = -40nc t c = +85nc t c = +25nc max2042 toc63 lo frequency (mhz) 2lo leakage at rf port (dbm) 2lo leakage at rf port vs. frequency 2600 2400 2200 2000 -45 -40 -35 -30 -25 -20 -50 1800 2800 p lo = -3dbm, 0dbm, +3dbm max2042 toc64 lo frequency (mhz) 2lo leakage at rf port (dbm) 2lo leakage at rf port vs. frequency 2600 2400 2200 2000 -45 -40 -35 -30 -25 -20 -50 1800 2800 v cc = 3.0v, 3.3v, 3.6v max2042 toc65 rf frequency (mhz) rf port return loss (db) rf port return loss vs. rf frequency 2800 2600 2400 2200 25 20 15 10 5 0 30 2000 3000 p lo = -3dbm, 0dbm, +3dbm f if = 300mhz max2042 toc66 if frequency (mhz) if port return loss (db) if port return loss vs. if frequency 410 320 230 140 25 20 15 10 5 0 30 50 500 f lo = 2200mhz v cc = 3.0v, 3.3v, 3.6v lo port return loss vs. lo frequency max2042 toc67 lo frequency (mhz) lo port return loss (db) 2500 2300 2100 1900 20 10 0 30 1700 2700 p lo = -3dbm p lo = +3dbm p lo = 0dbm max2042 toc68 supply current vs. temperature temperature (nc) supply current (ma) 60 35 10 -15 115 120 125 130 110 -40 85 v cc = 3.6v v cc = 3.3v v cc = 3.0v
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 ______________________________________________________________________________________ 15 typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 2, v cc = +5.0v , f rf = f lo + f if , f if = 200mhz, p if = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) +5.0v upconverter curves conversion loss vs. rf frequency max2042 toc69 rf frequency (mhz) conversion loss (db) 2800 2600 2400 2200 6 7 8 9 5 2000 3000 t c = +85c t c = +25c t c = -40c conversion loss vs. rf frequency max2042 toc70 rf frequency (mhz) conversion loss (db) 2800 2600 2400 2200 6 7 8 9 5 2000 3000 p lo = -3dbm, 0dbm, +3dbm conversion loss vs. rf frequency max2042 toc71 rf frequency (mhz) conversion loss (db) 2800 2600 2400 2200 6 7 8 9 5 2000 3000 v cc = 4.75v, 5.0v, 5.25v input ip3 vs. rf frequency max2042 toc72 rf frequency (mhz) input ip3 (dbm) 2800 2600 2400 2200 30 32 34 36 38 40 28 2000 3000 t c = -40c t c = +25c t c = +85c p if = 0dbm/tone input ip3 vs. rf frequency max2042 toc73 rf frequency (mhz) input ip3 (dbm) 2800 2600 2400 2200 30 32 34 36 38 40 28 2000 3000 p if = 0dbm/tone p lo = -3dbm, 0dbm, +3dbm input ip3 vs. rf frequency max2042 toc74 rf frequency (mhz) input ip3 (dbm) 2800 2600 2400 2200 30 32 34 36 38 40 28 2000 3000 v cc = 4.75v v cc = 5.0v v cc = 5.25v p if = 0dbm/tone lo-2if response vs. rf frequency max2042 toc75 rf frequency (mhz) lo-2if response (dbc) 2800 2600 2400 2200 55 65 75 85 45 2000 3000 t c = +85c t c = +25c t c = -40c p if = 0dbm lo-2if response vs. rf frequency max2042 toc76 rf frequency (mhz) lo-2if response (dbc) 2800 2600 2400 2200 55 65 75 85 45 2000 3000 p lo = +3dbm p lo = 0dbm p lo = -3dbm p if = 0dbm lo-2if response vs. rf frequency max2042 toc77 rf frequency (mhz) lo-2if response (dbc) 2800 2600 2400 2200 55 65 75 85 45 2000 3000 p if = 0dbm v cc = 4.75v, 5.0v, 5.25v
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 16 _____________________________________________________________________________________ typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 2, v cc = +5.0v , f rf = f lo + f if , f if = 200mhz, p if = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) +5.0v upconverter curves lo+2if response vs. rf frequency max2042 toc78 rf frequency (mhz) lo+2if response (dbc) 2800 2600 2400 2200 55 65 75 85 45 2000 3000 p if = 0dbm t c = +85c t c = +25c t c = -40c lo+2if response vs. rf frequency max2042 toc79 rf frequency (mhz) lo+2if response (dbc) 2800 2600 2400 2200 55 65 75 85 45 2000 3000 p if = 0dbm p lo = +3dbm p lo = 0dbm p lo = -3dbm lo+2if response vs. rf frequency max2042 toc80 rf frequency (mhz) lo+2if response (dbc) 2800 2600 2400 2200 55 65 75 85 45 2000 3000 p if = 0dbm v cc = 4.75v, 5.0v, 5.25v lo-3if response vs. rf frequency max2042 toc81 rf frequency (mhz) lo-3if response (dbc) 2800 2600 2400 2200 70 80 90 100 60 2000 3000 p if = 0dbm t c = +85c t c = -40c t c = +25c lo-3if response vs. rf frequency max2042 toc82 rf frequency (mhz) lo-3if response (dbc) 2800 2600 2400 2200 70 80 90 100 60 2000 3000 p if = 0dbm p lo = -3dbm, 0dbm, +3dbm lo-3if response vs. rf frequency max2042 toc83 rf frequency (mhz) lo-3if response (dbc) 2800 2600 2400 2200 70 80 90 100 60 2000 3000 p if = 0dbm v cc = 5.25v v cc = 5.0v v cc = 4.75v lo+3if response vs. rf frequency max2042 toc84 rf frequency (mhz) lo+3if response (dbc) 2800 2600 2400 2200 70 80 90 100 60 2000 3000 p if = 0dbm t c = -40c t c = +25c t c = +85c lo+3if response vs. rf frequency max2042 toc85 rf frequency (mhz) lo+3if response (dbc) 2800 2600 2400 2200 70 80 90 100 60 2000 3000 p if = 0dbm p lo = -3dbm, 0dbm, +3dbm lo+3if response vs. rf frequency max2042 toc86 rf frequency (mhz) lo+3if response (dbc) 2800 2600 2400 2200 70 80 90 100 60 2000 3000 p if = 0dbm v cc = 5.25v v cc = 5.0v v cc = 4.75v
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 ______________________________________________________________________________________ 17 typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 2, v cc = +5.0v , f rf = f lo + f if , f if = 200mhz, p if = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) +5.0v upconverter curves lo leakage at rf port vs. lo frequency max2042 toc87 lo frequency (mhz) lo leakage at rf port (dbm) 2600 2400 2200 2000 -30 -25 -20 -35 1800 2800 t c = -40c, +25c, +85c lo leakage at rf port vs. lo frequency max2042 toc88 lo frequency (mhz) lo leakage at rf port (dbm) 2600 2400 2200 2000 -30 -25 -20 -35 1800 2800 p lo = -3dbm, 0dbm, +3dbm lo leakage at rf port vs. lo frequency max2042 toc89 lo frequency (mhz) lo leakage at rf port (dbm) 2600 2400 2200 2000 -30 -25 -20 -35 1800 2800 v cc = 4.75v, 5.0v, 5.25v if leakage at rf port vs. lo frequency max2042 toc90 lo frequency (mhz) if leakage at rf port (dbm) 2600 2400 2200 2000 -80 -70 -60 -50 -40 -90 1800 2800 t c = -40c t c = +25c t c = +85c if leakage at rf port vs. lo frequency max2042 toc91 lo frequency (mhz) if leakage at rf port (dbm) 2600 2400 2200 2000 -80 -70 -60 -50 -40 -90 1800 2800 p lo = -3dbm, 0dbm, +3dbm if leakage at rf port vs. lo frequency max2042 toc92 lo frequency (mhz) if leakage at rf port (dbm) 2600 2400 2200 2000 -80 -70 -60 -50 -40 -90 1800 2800 v cc = 5.0v, 5.25v v cc = 4.75v
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 18 _____________________________________________________________________________________ typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 2, v cc = +5.0v , f rf = f lo + f if , f if = 200mhz, p if = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) +5.0v upconverter curves rf port return loss vs. rf frequency max2042 toc93 rf frequency (mhz) rf port return loss (db) 2800 2600 2400 2200 25 20 15 10 5 0 30 2000 3000 f if = 300mhz p lo = -3dbm, 0dbm, +3dbm if port return loss vs. if frequency max2042 toc94 if frequency (mhz) if port return loss (db) 410 320 230 140 25 20 15 10 5 0 30 50 500 f lo = 2200mhz v cc = 4.75v, 5.0v, 5.25v lo port return loss vs. lo frequency max2042 toc95 lo frequency (mhz) lo port return loss (db) 2500 2300 2100 1900 25 20 15 10 5 0 30 1700 2700 p lo = -3dbm p lo = +3dbm p lo = 0dbm supply current vs. temperature (t c ) max2042 toc96 temperature (c) supply current (ma) 60 35 10 -15 125 130 135 140 145 150 120 -40 85 v cc = 5.25v v cc = 5.0v v cc = 4.75v
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 ______________________________________________________________________________________ 19 typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 2, v cc = +3.3v , f rf = f lo + f if , f if = 200mhz, p if = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) +3.3v upconverter curves input ip3 vs. rf frequency max2042 toc100 rf frequency (mhz) input ip3 (dbm) 2800 2600 2400 2200 24 26 28 30 32 34 22 2000 3000 t c = -40c p if = 0dbm/tone t c = +25c t c = +85c input ip3 vs. rf frequency max2042 toc101 rf frequency (mhz) input ip3 (dbm) 2800 2600 2400 2200 24 26 28 30 32 34 22 2000 3000 p lo = -3dbm p if = 0dbm/tone p lo = 0dbm p lo = +3dbm input ip3 vs. rf frequency max2042 toc102 rf frequency (mhz) input ip3 (dbm) 2800 2600 2400 2200 24 26 28 30 32 34 22 2000 3000 v cc = 3.6v p if = 0dbm/tone v cc = 3.0v v cc = 3.3v lo-2if response vs. rf frequency max2042 toc103 rf frequency (mhz) lo-2if response (dbc) 2800 2600 2400 2200 55 65 75 85 45 2000 3000 t c = +85c t c = -40c t c = +25c p if = 0dbm lo-2if response vs. rf frequency max2042 toc104 rf frequency (mhz) lo-2if response (dbc) 2800 2600 2400 2200 55 65 75 85 45 2000 3000 p lo = +3dbm p lo = -3dbm p lo = 0dbm p if = 0dbm lo-2if response vs. rf frequency max2042 toc105 rf frequency (mhz) lo-2if response (dbc) 2800 2600 2400 2200 55 65 75 85 45 2000 3000 p if = 0dbm v cc = 3.0v, 3.3v, 3.6v conversion loss vs. rf frequency max2042 toc97 rf frequency (mhz) conversion loss (db) 2800 2600 2400 2200 6 7 8 9 5 2000 3000 t c = +85c t c = +25c t c = -40c conversion loss vs. rf frequency max2042 toc98 rf frequency (mhz) conversion loss (db) 2800 2600 2400 2200 6 7 8 9 5 2000 3000 p lo = -3dbm, 0dbm, +3dbm conversion loss vs. rf frequency max2042 toc99 rf frequency (mhz) conversion loss (db) 2800 2600 2400 2200 6 7 8 9 5 2000 3000 v cc = 3.0v, 3.3v, 3.6v
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 20 _____________________________________________________________________________________ typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 2, v cc = +3.3v , f rf = f lo + f if , f if = 200mhz, p if = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) +3.3v upconverter curves lo+2if response vs. rf frequency max2042 toc106 rf frequency (mhz) lo+2if response (dbc) 2800 2600 2400 2200 55 65 75 85 45 2000 3000 p if = 0dbm t c = +25c t c = +85c t c = -40c lo+2if response vs. rf frequency max2042 toc107 rf frequency (mhz) lo+2if response (dbc) 2800 2600 2400 2200 55 65 75 85 45 2000 3000 p if = 0dbm p lo = +3dbm p lo = 0dbm p lo = -3dbm lo+2if response vs. rf frequency max2042 toc108 rf frequency (mhz) lo+2if response (dbc) 2800 2600 2400 2200 55 65 75 85 45 2000 3000 p if = 0dbm v cc = 3.0v, 3.3v, 3.6v lo-3if response vs. rf frequency max2042 toc109 rf frequency (mhz) lo-3if response (dbc) 2800 2600 2400 2200 60 70 80 90 50 2000 3000 p if = 0dbm t c = +25c t c = -40c t c = +85c lo-3if response vs. rf frequency max2042 toc110 rf frequency (mhz) lo-3if response (dbc) 2800 2600 2400 2200 60 70 80 90 50 2000 3000 p if = 0dbm p lo = -3dbm, 0dbm, +3dbm lo-3if response vs. rf frequency max2042 toc111 rf frequency (mhz) lo-3if response (dbc) 2800 2600 2400 2200 60 70 80 90 50 2000 3000 p if = 0dbm v cc = 3.6v v cc = 3.0v v cc = 3.3v lo+3if response vs. rf frequency max2042 toc112 rf frequency (mhz) lo+3if response (dbc) 2800 2600 2400 2200 50 60 70 80 90 40 2000 3000 t c = +25c t c = +85c t c = -40c p if = 0dbm lo+3if response vs. rf frequency max2042 toc113 rf frequency (mhz) lo+3if response (dbc) 2800 2600 2400 2200 50 60 70 80 90 40 2000 3000 p lo = -3dbm, 0dbm, +3dbm p if = 0dbm lo+3if response vs. rf frequency max2042 toc114 rf frequency (mhz) lo+3if response (dbc) 2800 2600 2400 2200 50 60 70 80 90 40 2000 3000 p if = 0dbm v cc = 3.6v v cc = 3.3v v cc = 3.0v
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 ______________________________________________________________________________________ 21 typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 2, v cc = +3.3v , f rf = f lo + f if , f if = 200mhz, p if = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) +3.3v upconverter curves lo leakage at rf port vs. lo frequency max2042 toc115 lo frequency (mhz) lo leakage at rf port (dbm) 2600 2400 2200 2000 -30 -25 -20 -35 1800 2800 t c = -40c, +25c, +85c lo leakage at rf port vs. lo frequency max2042 toc116 lo frequency (mhz) lo leakage at rf port (dbm) 2600 2400 2200 2000 -30 -25 -20 -35 1800 2800 p lo = -3dbm, 0dbm, +3dbm lo leakage at rf port vs. lo frequency max2042 toc117 lo frequency (mhz) lo leakage at rf port (dbm) 2600 2400 2200 2000 -30 -25 -20 -35 1800 2800 v cc = 3.6v v cc = 3.3v v cc = 3.0v if leakage at rf port vs. lo frequency max2042 toc118 lo frequency (mhz) if leakage at rf port (dbm) 2600 2400 2200 2000 -80 -70 -60 -50 -40 -90 1800 2800 t c = -40c t c = +25c t c = +85c if leakage at rf port vs. lo frequency max2042 toc119 lo frequency (mhz) if leakage at rf port (dbm) 2600 2400 2200 2000 -80 -70 -60 -50 -40 -90 1800 2800 p lo = -3dbm, 0dbm, +3dbm if leakage at rf port vs. lo frequency max2042 toc120 lo frequency (mhz) if leakage at rf port (dbm) 2600 2400 2200 2000 -80 -70 -60 -50 -40 -90 1800 2800 v cc = 3.3v v cc = 3.6v v cc = 3.0v
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 22 _____________________________________________________________________________________ typical operating characteristics (continued) ( typical application circuit with tuning elements outlined in table 2, v cc = +3.3v , f rf = f lo + f if , f if = 200mhz, p if = 0dbm, p lo = 0dbm, t c = +25 n c, unless otherwise noted.) +3.3v upconverter curves rf port return loss vs. rf frequency max2042 toc121 rf frequency (mhz) rf port return loss (db) 2800 2600 2400 2200 25 20 15 10 5 0 30 2000 3000 f if = 300mhz p lo = -3dbm, 0dbm, +3dbm if port return loss vs. if frequency max2042 toc122 if frequency (mhz) if port return loss (db) 410 320 230 140 25 20 15 10 5 0 30 50 500 f lo = 2200mhz v cc = 3.0v, 3.3v, 3.6v lo port return loss vs. lo frequency max2042 toc123 lo frequency (mhz) lo port return loss (db) 2500 2300 2100 1900 25 20 15 10 5 0 30 1700 2700 p lo = 0dbm p lo = +3dbm p lo = -3dbm supply current vs. temperature (t c ) max2042 toc124 temperature (c) supply current (ma) 60 35 10 -15 115 120 125 130 110 -40 85 v cc = 3.0v v cc = 3.6v v cc = 3.3v
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 ______________________________________________________________________________________ 23 pin description pin name function 1, 6, 8, 14 v cc power supply. bypass to gnd with 0.01 f f capacitors as close as possible to the pin. 2 rf single-ended 50 i rf input. internally matched and dc shorted to gnd through a balun. provide a dc-blocking capacitor if required. capacitor also provides some rf match tuning. 3, 4, 5, 10, 12, 13, 17 gnd ground. internally connected to the exposed pad. connect all ground pins and the exposed pad (ep) together. 7 lobias lo amplifier bias control. output bias resistor for the lo buffer. connect a 698 i q 1% resistor (nomi - nal bias condition) from lobias to ground. the maximum current seen by this resistor is 3ma. 9, 15 gnd ground. not internally connected. ground these pins or leave unconnected. 11 lo local oscillator input. this input is internally matched to 50 i . requires an input dc-blocking capacitor. capacitor also provides some lo match tuning. 16, 20 gnd ground. connect all ground pins and the exposed pad (ep) together. 18, 19 if-, if+ mixer differential if output/input ep exposed pad. internally connected to gnd. solder this exposed pad to a pcb pad that uses multiple ground vias to provide heat transfer out of the device into the pcb ground planes. these multiple via grounds are also required to achieve the noted rf performance.
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 24 _____________________________________________________________________________________ detailed description when used as a low-side lo injection mixer in the 2300mhz to 2900mhz band, the max2042 provides +36dbm of iip3, with typical noise figure and conver - sion loss values of only 7.3db and 7.2db, respectively. the integrated baluns and matching circuitry allow for 50 i single-ended interfaces to the rf and the lo ports. the integrated lo buffer provides a high drive level to the mixer core, reducing the lo drive required at the max2042s input to a -3dbm to +3dbm range. the if port incorporates a differential interface, which is ideal for providing enhanced 2rf-2lo performance. specifications are guaranteed over broad frequency ranges to allow for use in wcs, lte, wimax, and mmds base stations. the max2042 is specified to operate over an rf input range of 2000mhz to 3000mhz, an lo range of 1800mhz to 2800mhz, and an if range of 50mhz to 500mhz. the external if transformer sets the lower fre - quency range (see the typical operating characteristics for details). operation beyond these ranges is possible (see the typical operating characteristics for additional information). rf interface and balun the max2042 rf input provides a 50 i match when combined with a series dc-blocking capacitor. this dc-blocking capacitor required as the input is internally dc shorted to ground through the on-chip balun. when using an 8.2pf dc-blocking capacitor, the rf port input return loss is typically 15db over the rf frequency range of 2500mhz to 2900mhz. lo inputs, buffer, and balun the max2042 is optimized for low-side lo injection applications with an 1800mhz to 2800mhz lo frequency range. the lo input is internally matched to 50 i , requir - ing only a 2pf dc-blocking capacitor. a two-stage internal lo buffer allows for a -3dbm to +3dbm lo input power range. the on-chip low-loss balun, along with an lo buffer, drives the double-balanced mixer. all interfac - ing and matching components from the lo inputs to the if outputs are integrated on-chip. high-linearity mixer the core of the max2042 is a double-balanced, high- performance passive mixer. exceptional linearity is pro - vided by the large lo swing from the on-chip lo buffer. iip3, 2rf-2lo rejection, and noise-figure performance are typically +36dbm, 70dbc, and 7.3db, respectively. differential if interface the max2042 has an if frequency range of 50mhz to 500mhz, where the low-end frequency depends on the frequency response of the external if components. the max2042s differential ports are ideal for provid - ing enhanced 2rf-2lo performance. the user can use a differential if amplifier or saw filter on the mixer if port, but a dc block is required on both if+/if- ports to keep external dc from entering the if ports of the mixer. typical applications typically use a 1:1 transformer such as the mabaes0029 to transform the 50 i differential interface to a 50 i single-ended interface. the loss of this transformer is included in the data presented in this data sheet. in addition, the if interface directly supports single-ended ac-coupled signals into or out of if+ by shorting if- to ground, and a 1k i resistor from if+ to ground. applications information input and output matching the rf input provides a 50 i match when combined with a series dc-blocking capacitor. use an 8.2pf capaci - tor value for rf frequencies ranging from 2000mhz to 3000mhz. the lo input is internally matched to 50 i ; use a 2pf dc-blocking capacitor to cover operations spanning the 1800mhz to 2800mhz range. the if output impedance is 50 i (differential). for evaluation, an exter - nal low-loss 1:1 (impedance ratio) balun transforms this impedance down to a 50 i single-ended output (see the typical application circuit ). reduced-power mode the max2042 has one pin (lobias) that allows an exter - nal resistor to set the internal bias current. a nominal value for this resistor is shown in tables 1 and 2. larger value resistors can be used to reduce power dissipa - tion at the expense of some performance loss. see the typical operating characteristics to evaluate the power vs. performance tradeoff. if q 1% resistors are not readily available, substitute with q 5% resistors. significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of +3.3v. doing so reduces the overall power consumption by up to 43%. see the +3.3v supply ac electrical characteristics table and the relevant +3.3v curves in the typical operating characteristics section to evaluate the power vs. performance tradeoffs.
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 ______________________________________________________________________________________ 25 table 1. downconverter mode c o mponent values table 2. upconverter mode component values layout considerations a properly designed pcb is an essential part of any rf/microwave circuit. keep rf signal lines as short as possible to reduce losses, radiation, and inductance. for the best performance, route the ground pin traces directly to the exposed pad under the package. the pcb exposed pad must be connected to the ground plane of the pcb. it is suggested that multiple vias be used to connect this pad to the lower-level ground planes. this method provides a good rf/thermal conduction path for the device. solder the exposed pad on the bottom of the device package to the pcb. the max2042 evaluation kit can be used as a reference for board layout. gerber files are available upon request at www.maxim-ic.com . power-supply bypassing proper voltage-supply bypassing is essential for high- frequency circuit stability. bypass each v cc pin with the capacitors shown in the typical application circuit and see tables 1 and 2. exposed pad rf/thermal considerations the exposed pad (ep) of the max2042s 20-pin thin qfn package provides a low thermal-resistance path to the die. it is important that the pcb on which the max2042 is mounted be designed to conduct heat from the ep. in addition, provide the ep with a low-inductance path to electrical ground. the ep must be soldered to a ground plane on the pcb, either directly or through an array of plated via holes. designation qty description component supplier c1 1 8.2pf microwave capacitor (0402) murata electronics north america, inc. c2, c6, c8, c11 4 0.01 f f microwave capacitors (0402) murata electronics north america, inc. c3, c9 0 not installed, capacitors c5 0 not installed, capacitor c10 1 2pf microwave capacitor (0402) murata electronics north america, inc. r1 1 698 i q 1% resistor (0402) digi-key corp. t1 1 1:1 if balun mabaes0029 m/a-com, inc. u1 1 max2042 ic (20 tqfn) maxim integrated products, inc. designation qty description component supplier c1 1 8.2pf microwave capacitor (0402) murata electronics north america, inc. c2, c6, c8, c11 4 0.01 f f microwave capacitors (0402) murata electronics north america, inc. c3, c9 0 not installed, capacitors c5 0 not installed, capacitor c10 1 2pf microwave capacitor (0402) murata electronics north america, inc. r1 1 698 i q 1% resistor (0402) digi-key corp. t1 1 1:1 if balun mabaes0029 m/a-com, inc. u1 1 max2042 ic (20 tqfn) maxim integrated products, inc.
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 26 _____________________________________________________________________________________ typical application circuit note: pins 3, 4, 5, 10, 12, 13, and 17 are all internally connected to the exposed ground pad. connect these pins to ground to improve isola tion. pins 9 and 15 ha ve no internal connection but can be externall y grounded to improve isola tion. 19 20 18 17 7 6 8 rf gnd gnd 9 v cc 1 2 4 5 15 14 12 11 lobias v cc v cc gnd gnd gnd 3 13 16 10 v cc gnd gnd lo gnd if+ if- gnd gnd gnd r1 c10 c8 c9 c11 lo input c6 c1 rf v cc v cc 1:1 c5 if t1 5 4 1 2 n.c. 3 c3 c2 v cc max2042 ep
sige high-linearity, 2000mhz to 3000mhz upconversion/downconversion mixer with lo buffer max2042 maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circuit patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. maxim integrated products, 120 san gabriel drive, sunnyvale, ca 94086 408-737-7600 27 ? 2009 maxim integrated products maxim is a registered trademark of maxim integrated products, inc. package information for the latest package outline information and land patterns, go to www.maxim-ic.com/packages . package type package code document no. 20 tqfn-ep t2055+3 21-0140 chip information process: sige bicmos


▲Up To Search▲   

 
Price & Availability of MAX2042ETP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X